3.657 \(\int \frac{1}{x^4 (a+c x^4)} \, dx\)

Optimal. Leaf size=195 \[ \frac{c^{3/4} \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{7/4}}-\frac{c^{3/4} \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{7/4}}+\frac{c^{3/4} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{7/4}}-\frac{c^{3/4} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt{2} a^{7/4}}-\frac{1}{3 a x^3} \]

[Out]

-1/(3*a*x^3) + (c^(3/4)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(7/4)) - (c^(3/4)*ArcTan[1 + (Sq
rt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(7/4)) + (c^(3/4)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^
2])/(4*Sqrt[2]*a^(7/4)) - (c^(3/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(7/4))

________________________________________________________________________________________

Rubi [A]  time = 0.118729, antiderivative size = 195, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 7, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.538, Rules used = {325, 211, 1165, 628, 1162, 617, 204} \[ \frac{c^{3/4} \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{7/4}}-\frac{c^{3/4} \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{7/4}}+\frac{c^{3/4} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{7/4}}-\frac{c^{3/4} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt{2} a^{7/4}}-\frac{1}{3 a x^3} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^4*(a + c*x^4)),x]

[Out]

-1/(3*a*x^3) + (c^(3/4)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(7/4)) - (c^(3/4)*ArcTan[1 + (Sq
rt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(7/4)) + (c^(3/4)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^
2])/(4*Sqrt[2]*a^(7/4)) - (c^(3/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(7/4))

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x^4 \left (a+c x^4\right )} \, dx &=-\frac{1}{3 a x^3}-\frac{c \int \frac{1}{a+c x^4} \, dx}{a}\\ &=-\frac{1}{3 a x^3}-\frac{c \int \frac{\sqrt{a}-\sqrt{c} x^2}{a+c x^4} \, dx}{2 a^{3/2}}-\frac{c \int \frac{\sqrt{a}+\sqrt{c} x^2}{a+c x^4} \, dx}{2 a^{3/2}}\\ &=-\frac{1}{3 a x^3}-\frac{\sqrt{c} \int \frac{1}{\frac{\sqrt{a}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{4 a^{3/2}}-\frac{\sqrt{c} \int \frac{1}{\frac{\sqrt{a}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{4 a^{3/2}}+\frac{c^{3/4} \int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{c}}+2 x}{-\frac{\sqrt{a}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{4 \sqrt{2} a^{7/4}}+\frac{c^{3/4} \int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{c}}-2 x}{-\frac{\sqrt{a}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{4 \sqrt{2} a^{7/4}}\\ &=-\frac{1}{3 a x^3}+\frac{c^{3/4} \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{7/4}}-\frac{c^{3/4} \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{7/4}}-\frac{c^{3/4} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{7/4}}+\frac{c^{3/4} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{7/4}}\\ &=-\frac{1}{3 a x^3}+\frac{c^{3/4} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{7/4}}-\frac{c^{3/4} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{7/4}}+\frac{c^{3/4} \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{7/4}}-\frac{c^{3/4} \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{7/4}}\\ \end{align*}

Mathematica [A]  time = 0.0288379, size = 188, normalized size = 0.96 \[ \frac{-8 a^{3/4}+3 \sqrt{2} c^{3/4} x^3 \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )-3 \sqrt{2} c^{3/4} x^3 \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )+6 \sqrt{2} c^{3/4} x^3 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )-6 \sqrt{2} c^{3/4} x^3 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{24 a^{7/4} x^3} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*(a + c*x^4)),x]

[Out]

(-8*a^(3/4) + 6*Sqrt[2]*c^(3/4)*x^3*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)] - 6*Sqrt[2]*c^(3/4)*x^3*ArcTan[1 +
 (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + 3*Sqrt[2]*c^(3/4)*x^3*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2] -
 3*Sqrt[2]*c^(3/4)*x^3*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(24*a^(7/4)*x^3)

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 139, normalized size = 0.7 \begin{align*} -{\frac{c\sqrt{2}}{8\,{a}^{2}}\sqrt [4]{{\frac{a}{c}}}\ln \left ({ \left ({x}^{2}+\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) \left ({x}^{2}-\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) ^{-1}} \right ) }-{\frac{c\sqrt{2}}{4\,{a}^{2}}\sqrt [4]{{\frac{a}{c}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+1 \right ) }-{\frac{c\sqrt{2}}{4\,{a}^{2}}\sqrt [4]{{\frac{a}{c}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}-1 \right ) }-{\frac{1}{3\,a{x}^{3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(c*x^4+a),x)

[Out]

-1/8*c/a^2*(a/c)^(1/4)*2^(1/2)*ln((x^2+(a/c)^(1/4)*x*2^(1/2)+(a/c)^(1/2))/(x^2-(a/c)^(1/4)*x*2^(1/2)+(a/c)^(1/
2)))-1/4*c/a^2*(a/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x+1)-1/4*c/a^2*(a/c)^(1/4)*2^(1/2)*arctan(2^(1/2
)/(a/c)^(1/4)*x-1)-1/3/a/x^3

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(c*x^4+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.84148, size = 362, normalized size = 1.86 \begin{align*} -\frac{12 \, a x^{3} \left (-\frac{c^{3}}{a^{7}}\right )^{\frac{1}{4}} \arctan \left (-\frac{a^{5} x \left (-\frac{c^{3}}{a^{7}}\right )^{\frac{3}{4}} - a^{5} \sqrt{\frac{a^{4} \sqrt{-\frac{c^{3}}{a^{7}}} + c^{2} x^{2}}{c^{2}}} \left (-\frac{c^{3}}{a^{7}}\right )^{\frac{3}{4}}}{c^{2}}\right ) + 3 \, a x^{3} \left (-\frac{c^{3}}{a^{7}}\right )^{\frac{1}{4}} \log \left (a^{2} \left (-\frac{c^{3}}{a^{7}}\right )^{\frac{1}{4}} + c x\right ) - 3 \, a x^{3} \left (-\frac{c^{3}}{a^{7}}\right )^{\frac{1}{4}} \log \left (-a^{2} \left (-\frac{c^{3}}{a^{7}}\right )^{\frac{1}{4}} + c x\right ) + 4}{12 \, a x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(c*x^4+a),x, algorithm="fricas")

[Out]

-1/12*(12*a*x^3*(-c^3/a^7)^(1/4)*arctan(-(a^5*x*(-c^3/a^7)^(3/4) - a^5*sqrt((a^4*sqrt(-c^3/a^7) + c^2*x^2)/c^2
)*(-c^3/a^7)^(3/4))/c^2) + 3*a*x^3*(-c^3/a^7)^(1/4)*log(a^2*(-c^3/a^7)^(1/4) + c*x) - 3*a*x^3*(-c^3/a^7)^(1/4)
*log(-a^2*(-c^3/a^7)^(1/4) + c*x) + 4)/(a*x^3)

________________________________________________________________________________________

Sympy [A]  time = 0.533197, size = 32, normalized size = 0.16 \begin{align*} \operatorname{RootSum}{\left (256 t^{4} a^{7} + c^{3}, \left ( t \mapsto t \log{\left (- \frac{4 t a^{2}}{c} + x \right )} \right )\right )} - \frac{1}{3 a x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(c*x**4+a),x)

[Out]

RootSum(256*_t**4*a**7 + c**3, Lambda(_t, _t*log(-4*_t*a**2/c + x))) - 1/(3*a*x**3)

________________________________________________________________________________________

Giac [A]  time = 1.11697, size = 236, normalized size = 1.21 \begin{align*} -\frac{\sqrt{2} \left (a c^{3}\right )^{\frac{1}{4}} \arctan \left (\frac{\sqrt{2}{\left (2 \, x + \sqrt{2} \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{c}\right )^{\frac{1}{4}}}\right )}{4 \, a^{2}} - \frac{\sqrt{2} \left (a c^{3}\right )^{\frac{1}{4}} \arctan \left (\frac{\sqrt{2}{\left (2 \, x - \sqrt{2} \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{c}\right )^{\frac{1}{4}}}\right )}{4 \, a^{2}} - \frac{\sqrt{2} \left (a c^{3}\right )^{\frac{1}{4}} \log \left (x^{2} + \sqrt{2} x \left (\frac{a}{c}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{c}}\right )}{8 \, a^{2}} + \frac{\sqrt{2} \left (a c^{3}\right )^{\frac{1}{4}} \log \left (x^{2} - \sqrt{2} x \left (\frac{a}{c}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{c}}\right )}{8 \, a^{2}} - \frac{1}{3 \, a x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(c*x^4+a),x, algorithm="giac")

[Out]

-1/4*sqrt(2)*(a*c^3)^(1/4)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/a^2 - 1/4*sqrt(2)*(a*c^
3)^(1/4)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/a^2 - 1/8*sqrt(2)*(a*c^3)^(1/4)*log(x^2 +
 sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/a^2 + 1/8*sqrt(2)*(a*c^3)^(1/4)*log(x^2 - sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c
))/a^2 - 1/3/(a*x^3)